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24 ABSTRACT

25 Streamflow predictions derived from a hydrologic model are subject to many sources of errors, 

26 including uncertainties in meteorological inputs, representation of physical processes, and model 

27 parameters.  To reduce the effects of these uncertainties and thus improve the accuracy of model 

28 prediction, the U.S. National Water Model (NWM) incorporates streamflow observations in the 

29 modeling framework and updates model-simulated values using the observed ones.  This 

30 updating procedure is called streamflow data assimilation (DA).  This study evaluates the 

31 prediction performance of streamflow DA realized in the NWM.  We implemented the model 

32 using WRF-Hydro® with the NWM modeling elements and assimilated 15-minute streamflow 

33 data into the model, observed during 2016–2018 at 140 U.S. Geological Survey stream gauge 

34 stations in Iowa.  In its current DA scheme, known as “nudging,” the assimilation effect is 

35 propagated downstream only, which allows us to assess the performance of streamflow 

36 predictions generated at 70 downstream stations in the study domain.  These 70 locations cover 

37 basins of a range of scales, thus enabling a multi-scale hydrologic evaluation by inspecting 

38 annual total volume, peak discharge magnitude and timing, and an overall performance indicator 

39 represented by the Kling-Gupta efficiency.  The evaluation results show that DA improves the 

40 prediction skill significantly, compared to open-loop simulation, and the improvements increase 

41 with areal coverage of upstream assimilation points.

42 (KEYWORDS: National Water Model; streamflow assimilation; multi-scale data assimilation; 

43 flood forecasting.)
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44 INTRODUCTION

45 In May 2016, the U.S. National Weather Service (NWS) has implemented and continues 

46 to run a continental-scale hydrologic model, the National Water Model (NWM), as part of its 

47 operations.  The NWM is a distributed hydrologic model that simulates water cycles and predicts 

48 streamflow over the entire United States (Cosgrove et al., 2015, 2016).  The operational 

49 implementation of the NWM demonstrates increasing demand for high-resolution hydrologic 

50 information.  This modeling framework helps researchers simulate and understand more 

51 comprehensive aspects of the interactions between atmosphere and land-surface, which have 

52 been unexplored by conventional approaches using lumped and mesoscale models (e.g., 

53 Sorooshian et al., 1993; Cuo et al., 2011).  Distributed modeling also complements current 

54 streamflow guidance provided only at designated sites and expands prediction capabilities to 

55 ungauged locations.  Recent results from continental-scale retrospective simulations provide a 

56 glimpse into modeling performance and demonstrate the early success and potential of data-

57 intensive national-scale flood forecasting (e.g., Rafieeinasab et al., 2016).  A recent study by 

58 Rojas et al. (2020) documents the performance of the NWM over Iowa at independent locations 

59 from which the model included no data.

60 The motivation to implement streamflow data assimilation (DA) in the NWM was to 

61 improve model simulation and forecast initial conditions by correcting modeled streamflow 

62 using observations at gauging stations.  However, the actual performance and capabilities of DA 

63 in the NWM has not been documented well at ungauged locations.  Because the NWS has not 

64 configured the model to run in an open-loop mode without streamflow observations, and the 

65 model replaces modeled streamflow at assimilation locations with observed values in the model 

66 outputs, it has been difficult to assess the model’s predictive skill.  Therefore, we developed a 

67 hydrologic evaluation framework to understand the capability of and improvements by the 

68 NWM’s current DA scheme.  We examined multiple aspects of DA’s effects on hydrologic 

69 prediction and characterized their features regarding catchment scale and fractional coverage of 

70 upstream assimilation locations.
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71 MODEL AND DATASET

72 The NWM is an hourly-based, uncoupled hydrologic modeling and forecasting system 

73 built on the WRF-Hydro® community model (Gochis et al., 2018).  In this study, we 

74 implemented WRF-Hydro® with the NWM configuration, similar to the one running at the NWS, 

75 for the Iowa domain where abundant water information is readily accessible via an online 

76 platform (e.g., Demir and Krajewski, 2013; Krajewski et al., 2017).  In Iowa, there are many 

77 U.S. Geological Survey (USGS) stream gauges covering a wide range of drainage scales (Figure 

78 1).  This enables a comprehensive performance evaluation of NWM DA across scales.  NWM 

79 retrospective analysis with streamflow DA requires meteorological forcing products (e.g., 

80 precipitation) and streamflow observations, and we collected these data for the period of 2015 to 

81 2018.  We note that several earlier studies (Seo et al., 2018; Krajewski et al., 2020; Seo and 

82 Krajewski, 2020) include a variety of evaluation (e.g., precipitation) and analyses of these data 

83 for the common temporal and spatial domain used in this study.

84 NWM Implementation

85 We acquired the NWM domain dataset for Iowa from the Consortium of Universities for 

86 the Advancement of Hydrologic Science, Inc. (CUAHSI), using an application known as 

87 “domain subsetter (Castronova et al., 2019)” offline.  The model grids and parameters were 

88 retrieved from the NWM version 1.2.2, rather than the current operational version, 2.0 (the 

89 version 1.2.2 was the latest one available with the application at the time of conducting this 

90 study).  This is unlikely to generate serious differences in simulation results because the version 

91 upgrade focused mostly on spatial (e.g., adding Hawaii) and temporal (e.g., extended lookback 

92 hours of the analysis cycle for model calibration and regionalization) domain expansion.  To 

93 implement NWM in our computational environment, we used WRF-Hydro V5.0.3, which allows 

94 operational NWM configurations, including the DA capability.

95 The NWM consists of the Land Surface Model (LSM) and water routing elements, each 

96 of which is executed on a different NWM grid resolution (1 km for LSM and 0.25 km for 

97 routing, respectively).  The LSM represents vertical exchange of energy and water fluxes 

98 between atmosphere and land surface using the Noah Multi-Parameterization (Noah-MP) model 

99 (Niu et al., 2011; Yang et al., 2011).  The routing elements encompass diffusive wave surface 

100 routing (Downer, 2002), saturated subsurface flow routing (Wigmosta et al., 1994; Wigmosta 



This article is protected by copyright. All rights reserved

101 and Lettenmaier, 1999), and Muskingum-Cunge channel routing (e.g., Tang et al., 1999).  The 

102 routing of surface and subsurface is fulfilled on a grid basis, whereas the channel routing 

103 functions on vectorized units (i.e., channel links) derived from NHDPlus V2 stream reaches 

104 (McKay et al., 2012).  We excluded reservoir routing in our NWM configuration to simplify the 

105 model implementation and ran the model with a default hydrologic parameter set (without 

106 parameter calibration).  In the NWM’s DA approach (Gochis et al., 2018), parameter calibration 

107 in LSM and surface/subsurface routing is of less interest because channel flow routing from an 

108 assimilated location along the downstream river reach is the major factor determining streamflow 

109 discharge.

110 Dataset

111 Input forcing data for the Noah-MP LSM includes incoming short- and long-wave 

112 radiation, specific humidity, air temperature, surface pressure, near surface wind components, 

113 and precipitation rate.  We retrieved these meteorological variables from the hourly North 

114 America Land Data Assimilation System (NLDAS) dataset (e.g., Xia et al., 2012) at a resolution 

115 of 0.125 degrees.  In our forcing dataset, we replaced the NLDAS precipitation rate data with the 

116 Multi-Radar Multi-Sensor (MRMS; Zhang et al., 2016) product as a separate precipitation 

117 forcing, which includes a rain gauge correction with an enhanced resolution of 0.01 degrees.  We 

118 collected these hourly NLDAS and MRMS data for 2015–2018 and resampled them onto the 1-

119 km LSM grid for model (Noah-MP) forcing.

120 We collected streamflow data from 140 USGS stations in Iowa (Figure 1) where quality-

121 controlled streamflow records are available at a 15-minute resolution.  These streamflow data 

122 facilitate streamflow DA at all USGS locations and the evaluation of DA at their downstream 

123 gauge locations.  As indicated in Figure 1, 70 USGS locations are available for the DA 

124 evaluation; this number varies slightly depending on the status of missing data at these stations.  

125 The streamflow records were obtained by converting measured water level (stage) into discharge 

126 using well-defined rating curves produced for each site.  The USGS has developed these rating 

127 curves from periodic collection of stage-discharge measurements, especially during low- and 

128 high-flow events.  In this study, we do not consider rating curve uncertainty and its effect on our 

129 DA evaluation.
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130 METHODOLOGY

131 NWM Simulations

132 To assess the improvement made by DA, we simulated the NWM with DA and open-

133 loop (no DA) modes for a period from August 2015 to December 2018.  We used the early 

134 simulation period (August 2015 to March 2016) to warm-up the model states for the remaining 

135 analysis period.  Because precipitation estimation for winter months still remains challenging 

136 (e.g., Seo et al., 2015; Souverijns et al., 2017) and thus may affect model simulation results, we 

137 limited the analysis of simulation results to the period of April through October in each year 

138 (2016–2018).

139 The DA scheme in NWM is knowns as “nudging” and consists of direct insertion; i.e., 

140 the observed value replaces the model value without considering the associated uncertainty.  In 

141 the DA procedure, we did not account for the quality of observed streamflow in the nudging 

142 process (see Gochis et al., 2018) in that the measurement (or rating curve) uncertainties are 

143 unknown.  Nudge at the assimilation location is defined as the difference between observed and 

144 model estimated streamflow (i.e., model error) with a limited temporal interpolation.  In the 

145 NWM, spatial smoothing is inactive for computational efficiency, while temporal smoothing 

146 assigns a heavy weight to an observation within 15 minutes from the current time and sets e-

147 folding time as two hours.  The calculated adjustment (nudge) at each assimilation location is 

148 then propagated downstream through a channel routing procedure using the Muskingum-Cunge 

149 method:

150

151  + ��(�) = �1[��(� ― 1) + ��(� ― 1)] �2[��(�) + ��(� ― 1)]

152 +  ( 1 )�3[��(� ― 1) + ��(� ― 1)] +  (
����� )

153

154 where  denotes streamflow discharge at the current ( ) and previous ( ) times at the � � � ― 1

155 downstream ( ) and upstream ( ) reaches.  , , and  are coefficients calculated using � � �1 �2 �3

156 routing parameters (see Tang et al., 1999), and  and  indicate lateral inflow and the wedge �� �
157 storage contribution from lateral inflow.  The model includes the nudge  in all three ��(� ― 1)
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158 streamflow terms in Eq. (1) to lessen discontinuity between the upstream and downstream 

159 reaches.  However, the nudge included in the first and second terms for the upstream reach is 

160 applied only for solving downstream discharge in Eq. (1) and is not saved as part of the model 

161 output for the upstream reach.  In other words, the nudge is not propagated upstream.

162 DA Evaluation

163 A meaningful evaluation of DA requires a comparison of the model-estimated 

164 streamflow (at the evaluation locations) with observations at points unused in the data 

165 assimilation.  In the NWM, DA replaces model-simulated values with the observations, if valid 

166 observations are available at the gauging stations.  In the NWM setup, this is challenging for DA 

167 evaluation because the model assimilates the observed values at all USGS stations shown in 

168 Figure 1, including the 70 evaluation locations, which also become assimilation points for their 

169 downstream reaches.  Therefore, we decided to retrieve the simulated streamflow values (for DA 

170 evaluation) at the immediate upstream links directly connected with the evaluation point, 

171 assuming that the effects of channel routing and lateral inflow along the stream link containing 

172 the evaluation point are negligible.  To explore the validity of this assumption, we conducted an 

173 experiment with two selected locations (Van Meter and Cedar Falls), which cover different scale 

174 basins as shown in Figure 1.  In the experiment, we did not provide streamflow observations at 

175 Van Meter and Cedar Falls to avoid replacement of model generated streamflow with the 

176 observations (i.e., to obtain model streamflow propagated from upstream DA).  The result of this 

177 experiment is presented in the next section.  As reference for DA evaluation, we employed the 

178 persistence-based prediction (e.g., Krajewski et al., 2020), which assumes spatial persistence 

179 from upstream observations.  If there are multiple upstream stations on different branches of the 

180 river network (see Krajewski et al. 2020 for details), a simple addition of their observations 

181 would provide a predicted value at the downstream location.

182 We compared the prediction performance of the NWM with DA to the performance 

183 without DA (NoDA) and persistence (indicated as “No Model”).  The evaluation metrics used in 

184 the analyses are: (1) relative volume error ( ); (2) relative peak error ( ); (3) peak timing ��� ����
185 error ( ); and (4) Kling-Gupta efficiency (KGE).  The peak errors are calculated for an annual ���
186 maximum discharge.  The formulas of these metrics are provided in Eqs. (2)-(5):
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187

188                                                                                             (2)��� =
���� ― �������� × 100%

189                                                                                       (3)���� =
��, ��� ― ��,�����,��� × 100%

190                                                                                                  (4)��� = ��,��� ― ��,���
191                                                          (5)��� = 1.0 ― (� ― 1)2 + (� ― 1)2 + (� ― 1)2

192 where , , and  denote total volume (m3), peak discharge (m3s-1), and peak time (h) obtained � �� ��
193 from model simulations ( ) and observations ( ) from April to October of each year.  ��� ���
194 KGE (Gupta et al., 2009) is an overall performance indicator describing the predictive power of 

195 hydrologic models and is represented as a function of correlation ( ), the ratio of standard �
196 deviation ( ), and the ratio of mean ( ) between simulated and observed streamflow.  We � �
197 examined these evaluation metrics, focusing on catchment scale and the analyzed performance 

198 improvements accomplished by DA (against NoDA), with respect to the areal coverage fraction 

199 defined using the assimilated upstream catchment area.  The improvements are defined as simple 

200 differences in the evaluation metrics calculated with and without data assimilation. 

201 RESULTS

202 The results of the experiment, conducted to learn whether using model prediction from 

203 upstream links is suitable for our analysis, are presented in Figure 2 for two gauging stations.  

204 These results show that streamflow discharge at the two locations and their upstream links, 

205 represented by blue and red solid lines, agree very well; there is little if any difference between 

206 them.  The KGE values for the blue and red lines appear to be the same (0.79 and 0.91 for Van 

207 Meter and Cedar Falls, respectively).  This allows us to use the modeled streamflow at the 

208 upstream links for DA evaluation.  The model simulations at the location of the evaluation gauge 

209 are “corrupted” by the data collected there.  Figure 2 also demonstrates that DA significantly 

210 improves model performance at the two locations, compared to open-loop simulations.  For 

211 example, DA eliminated an erroneous peak observed at Van Meter in August 2016 and 

212 significantly improved KGE (0.13 vs. 0.79).
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213 In Figure 3, we present the evaluation results focusing on the four metrics defined in Eqs. 

214 (2)-(5) for each simulation year.  We assessed the NWM’s prediction performance with DA and 

215 NoDA, compared to the result from the persistence method indicated as “No Model” in Figure 3.  

216 To calculate the relative peak error ( ) and peak timing error ( ), we identified an NWM ���� ���
217 simulated peak within a scale-dependent time window around the annual peak observed from the 

218 USGS streamflow data.  We made this choice because the model occasionally generates an 

219 annual peak at a completely different time, as shown in the case of Van Meter in Figure 2.  The 

220 search window was defined using time of concentration (i.e., the longest travel time along the 

221 river network) or 5 days, whichever is smaller.  In Figure 3, DA seems to perform better at 

222 estimating runoff volume and peak discharge than NoDA and persistence do.  For  and , ��� ����
223 most of the red dots representing DA stay near the no error (0%) line and within a ±50 % range, 

224 respectively, whereas NoDA and persistence show underestimations both in volume and peak 

225 discharge.  Persistence leads to underestimations in volume and peak discharge, and early peak 

226 timing, as illustrated in Figure 3; drainage areas (represented by single or multiple upstream 

227 gauging stations) that are smaller than the area represented by the downstream evaluation station 

228 yield the observed underestimations and early peak.  However, the overall performance (KGE) 

229 of persistence seems better at many locations than that of model simulation with NoDA, 

230 implying that the forecasting approach without models can provide useful guidance if there are 

231 reliable gauging stations upstream (see Krajewski et al., 2020).  Overall, the NWM with DA 

232 outperforms persistence and NoDA based on KGE.  We note that DA’s slight underestimations 

233 of total volume might be the result of lateral inflow missed along the stream links of evaluation 

234 points.

235 We examined the scale-dependent performance of DA and persistence in Figure 4.  In 

236 this analysis, we excluded the result with NoDA because its performance was lower than those of 

237 DA and persistence.  As shown in Figure 4, the performance of DA- and persistence-based 

238 predictions tends to improve as catchment scale becomes larger.  This scale-dependence is 

239 obviously shown in KGE, while reveals wide distribution across catchment scales (many ���
240 locations have timing errors outside a one-day window from the actual peak time).  With 

241 increasing scale, the dispersion of  and decreases, and the mean of these errors ��� ����
242 gradually approaches negligible bias.  The key findings from Figure 4 are: (1) DA outperforms 
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243 persistence, particularly at smaller scales (e.g., approximately up to 5,000 km2) for the study 

244 domain; and (2) persistence-based predictions are comparable with the ones made by DA at 

245 larger scales.  This is understandable because the skill in the streamflow prediction is determined 

246 by measuring the water already in the river system.

247 Based on the results shown in Figures 3 and 4, we quantified the performance 

248 improvements (e.g., in terms of each evaluation metric) attained by DA in the NWM procedures.  

249 Figure 5 shows the improved model performance characterized by the areal coverage fraction 

250 presented in Figure 5(c), which describes the areal coverage of upstream assimilation stations to 

251 the entire catchment delineated by downstream evaluation station.  As shown in Figure 5, the DA 

252 performance tends to improve as the upstream stations cover larger areas, indicating that 

253 fractional coverage is a primary factor in determining the performance of DA.  The large 

254 variability of the KGE improvement is somewhat surprising.  While the improvement is greater 

255 because more of the upstream area is being monitored, the variability is high.  The variability in 

256 the improvement is partially due to the statistical effect of the relative sample size and is also a 

257 consequence of the model performance (e.g., open-loop) itself.  For example, when the model 

258 works well with an open-loop mode, the expected improvement by DA is small.  When the 

259 model works poorly, the potential for improvement is much higher (see Supporting Information).

260 As we discussed in the “NWM Implementation” section, parameter calibration in the 

261 LSM and surface/subsurface routing elements would be less impactful if this coverage fraction is 

262 sufficiently high.  Streamflow assimilation diminishes uncertainties/errors generated by 

263 misinterpreted parameters in upstream catchment modeling.  We recognize from Figure 5 that 

264 improving the peak estimation is challenging with large variability even at the higher coverage 

265 fraction range, although the total volume reveals relatively low variability.  Figure 5 could 

266 provide insight for the potential performance of DA for other regions with landscapes similar to 

267 Iowa’s (e.g., no complex terrain and natural channels).

268 SUMMARY AND CONCLUSIONS

269 This study extensively evaluated the NWM’s DA performance based on our model 

270 implementation that updated the model-simulated streamflow every 15 minutes using streamflow 

271 data observed during 2016–2018 at 140 USGS stations in Iowa.  Our investigation builds on a 

272 recent evaluation done by Rojas et al. (2020) on an earlier version of the NWM.  Since NWM 
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273 DA evaluation is challenging with the current NWM configuration (there is no access to the 

274 open-loop prediction at the assimilation data points), we developed a novel framework to assess 

275 streamflow predictions generated by the DA procedure.  To demonstrate DA’s prediction 

276 capability compared to the open-loop (NoDA) and persistence (No Model) method, we measured 

277 an overall performance metric known as KGE and errors in annual total volume, peak discharge, 

278 and peak timing.  The analysis results showed that DA significantly improves streamflow 

279 prediction.  The improvements (DA vs. NoDA) were characterized by the areal coverage fraction 

280 of the upstream assimilation point; it tends to increase with larger fractional coverage (Figure 5).  

281 Given the large dispersion in the annual peak errors (e.g., amounts and time), predicting the peak 

282 remains challenging, even using the DA procedure.  We plan to investigate this aspect further to 

283 learn if another channel routing scheme or use of a different set of parameters (e.g., calibration) 

284 with the current scheme can ameliorate the peak estimation.  The tendency of prediction 

285 improvement observed in Figure 5 could be used as reference for application of DA to other 

286 regions or guidance when designing a stream sensor network for hydrologic prediction.

287 We used persistence-based predictions as reference to assess the DA-based prediction 

288 results.  The persistence method incorporates streamflow observations from the same upstream 

289 stations used in DA and its concept is rather simple but efficient (e.g., Krajewski et al., 2020).  

290 We found that DA outperforms persistence, particularly at catchment scales smaller than 5,000 

291 km2 (the number might be different at different regions depending on the configuration of stream 

292 gauge network), where the coverage fraction is not as good as the one for larger scales as shown 

293 in Figure 5(c).  This should come as no surprise because the model uses additional information, 

294 i.e., rainfall.  Nevertheless, the performance of persistence looks impressive and reliable at larger 

295 scales, and thus could be a good alternative to save model computation time and computational 

296 resources.  The multi-scale evaluation of this study revealed its scale-dependent features: (1) the 

297 prediction performance increases as catchment scale becomes larger (e.g., KGE); and (2) KGE 

298 and errors in volume and peak discharge are approaching ideal prediction (e.g., no error), and 

299 their dispersion decreases significantly at larger scales.

300 RECOMMENDED FUTURE RESEARCH

301 Numerous stage-only sensors exist that can complement the current coverage of USGS 

302 stations and thus expand DA’s performance to relatively smaller basins.  A good example is 
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303 about 250 stream sensors (Kruger et al., 2016) operated by the Iowa Flood Center (IFC) to 

304 monitor streams and creeks near Iowa communities.  The IFC has developed a procedure to build 

305 “synthetic rating curves” (Quintero et al., 2021) using hydraulic/hydrologic models.  Soon we 

306 will include these stations in our NWM configuration and fill the significant scale gap (e.g., 

307 smaller than 1,000 km2) shown in Figure 4.  This incorporation will also provide an opportunity 

308 to independently evaluate the synthetic rating curves developed using the IFC’s Hillslope Link 

309 Model (Krajewski et al., 2017; Quintero et al., 2020) with DA procedures different than the one 

310 used in the NWM.

311 SUPPORTING INFORMATION

312 Additional supporting information may be found online under the Supporting Information tab for 

313 this article: A figure accounting for the variability of prediction improvement shown in Figure 5.

314 ACKNOWLEDGMENTS

315 This study was supported by the Iowa Flood Center at the University of Iowa and the 

316 Hydrometeorology Testbed (HMT) Program within NOAA/OAR Office of Weather and Air 

317 Quality under Grant No. NA17OAR4590131.  The authors thank Dr. Anthony Castronova at 

318 CUAHSI for providing the NWM grids and parameters.  The authors are also grateful to Drs. 

319 Aubrey Dugger and David Gochis at the National Center for Atmospheric Research for guidance 

320 on our NWM implementation.

321 LITERATURE CITED

322 Castronova, A.M., D. Tijerina, A.L. Dugger, A. Rafieeinasab, M. McAllister, L.E. Condon, H. 

323 Tran, J. Zhang, D. Gochis, and R.M. Maxwell. 2019. “Improving access to continental-

324 scale hydrology models for research and education - A subsetting adventure.” Paper 

325 presented at 2019 AGU Fall meeting, American Geophysical Union, San Francisco, CA.

326 Cosgrove, B., D. Gochis, E.P. Clark, Z. Cui, A.L. Dugger, G.M. Fall, X. Feng, M.A. Fresch, J.J. 

327 Gourley, S. Khan, D. Kitzmiller, H.S. Lee, Y. Liu, J.L McCreight, A.J. Newman, A. 

328 Oubeidillah, L. Pan, C. Pham, F. Salas, K.M Sampson, M. Smith, G. Sood, A. Wood, 

329 D.N. Yates, W. Yu, and Y. Zhang. 2015. “Hydrologic modeling at the National Water 

330 Center: Operational implementation of the WRF-Hydro model to support National 



This article is protected by copyright. All rights reserved

331 Weather Service hydrology.” Paper presented at 2015 AGU Fall meeting, American 

332 Geophysical Union, San Francisco, CA.

333 Cosgrove, B., D. Gochis, E.P. Clark, Z. Cui, A.L. Dugger, X. Feng, L.R. Karsten, S. Khan, D. 

334 Kitzmiller, H.S. Lee, Y. Liu, J.L McCreight, A.J. Newman, A. Oubeidillah, L. Pan, C. 

335 Pham, F. Salas, K.M Sampson, G. Sood, A. Wood, D.N. Yates, and W. Yu. 2016. “An 

336 overview of the National Weather Service National Water Model.” Paper presented at 

337 2016 AGU Fall meeting, American Geophysical Union, San Francisco, CA.

338 Cuo, L., T.C. Pagano, and Q.J. Wang. 2011. “A review of quantitative precipitation forecasts and 

339 their use in short- to medium-range streamflow forecasting.” Journal of 

340 Hydrometeorology 12(5): 713–728. https://doi.org/10.1175/2011JHM1347.1

341 Demir, I., and W.F. Krajewski. 2013. “Towards an integrated flood information system: 

342 Centralized data access, analysis, and visualization.” Environmental Modelling and 

343 Software 50: 77–84. https://doi.org/10.1016/j.envsoft.2013.08.009

344 Downer, C.W., F.L. Ogden, W.D. Martin, and R.S. Harmon. 2002. “Theory, development, and 

345 applicability of the surface water hydrologic model CASC2D.” Hydrological Processes 

346 16(2): 255–275. https://doi.org/10.1002/hyp.338

347 Gochis, D., M. Barlage, A. Dugger, L. Karsten, M. McAllister, J. McCreight, J. Mills, A. 

348 Rafieeinasab, L. Read, K. Sampson, D. Yates, and W. Yu. 2018. “The WRF-Hydro 

349 modeling system technical description (Version 5.0).” NCAR Technical Note. 

350 https://doi.org/10.5065/D6J38RBJ

351 Gupta, H.V., H. Kling, K.K. Yilmaz, and G.F. Martinez. 2009. “Decomposition of the mean 

352 squared error and NSE performance criteria: Implications for improving hydrological 

353 modelling.” Journal of Hydrology 377(1–2): 80–91. 

354 https://doi.org/10.1016/j.jhydrol.2009.08.003

355 Krajewski, W.F., D. Ceynar, I. Demir, R. Goska, A. Kruger, C. Langel, R. Mantilla, J. Niemeier, 

356 F. Quintero, B.-C. Seo, S.J. Small, L.J. Weber, and N. Young. 2017. “Real-time flood 

357 forecasting and information system for the State of Iowa.” Bulletin of the American 

358 Meteorological Society 98(3): 539–554. https://doi.org/10.1175/BAMS-D-15-00243.1

https://doi.org/10.1175/2011JHM1347.1
https://doi.org/10.1016/j.envsoft.2013.08.009
https://doi.org/10.1002/hyp.338
https://doi.org/10.5065/D6J38RBJ
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1175/BAMS-D-15-00243.1


This article is protected by copyright. All rights reserved

359 Krajewski, W.F., G.R. Ghimire, and F. Quintero. 2020. “Streamflow forecasting without 

360 models.” Journal of Hydrometeorology 21(8): 1689–1704. https://doi.org/10.1175/JHM-

361 D-19-0292.1

362 Kruger, A., W.F. Krajewski, J.J. Niemeier, D.L. Ceynar, and R. Goska. 2016. “Bridge mounted 

363 river stage sensors (BMRSS).” IEEE Access 4: 8948–8967. 

364 https://doi.org/10.1109/ACCESS.2016.2631172

365 McKay, L., T. Bondelid, T. Dewald, J. Johnston, R. Moore, and A. Rea. 2012. “NHDPlus 

366 Version 2: User Guide.” US Environmental Protection Agency. ftp://ftp.horizon-

367 systems.com/NHDplus/NHDPlusV21/Documentation/NHDPlusV2_User_Guide.pdf

368 Niu, G.‐Y., Z.‐L. Yang, K.E. Mitchell, F. Chen, M.B. Ek, M. Barlage, A. Kumar, K. Manning, 

369 D. Niyogi, E. Rosero, M. Tewari, and Y. Xia. 2011. “The community Noah land surface 

370 model with multi-parameterization options (Noah‐MP): 1. Model description and 

371 evaluation with local‐scale measurements.” Journal of Geophysical Research 116: 

372 D12109. https://doi.org/10.1029/2010JD015139

373 Quintero, F., W.F. Krajewski, M. Muste, M. Rojas, G. Perez, S.J. Johnson, A.N. Anderson, T.J. 

374 Honemuller, W. Cappuccio, and J. Zogg. 2021. “Development of synthetic rating curves: 

375 A case study in Iowa.” Journal of Hydrologic Engineering 26(1): 05020046. 

376 https://doi.org/10.1061/(ASCE)HE.1943-5584.0002022

377 Quintero, F., W.F. Krajewski, B.-C. Seo, and R. Mantilla. 2020. “Improvement and evaluation of 

378 the Iowa Flood Center Hillslope Link Model (HLM) by calibration-free approach.” 

379 Journal of Hydrology 584: 124686. https://doi.org/10.1016/j.jhydrol.2020.124686

380 Rafieeinasab, A., J.L. McCreight, A.L. Dugger, D. Gochis, L.R. Karsten, Y. Zhang, B. 

381 Cosgrove, and Y. Liu. 2016. “Evaluation of streamflow forecast for the National Water 

382 Model of U.S. National Weather Service.” Paper presented at 2016 AGU Fall meeting, 

383 American Geophysical Union, San Francisco, CA.

384 Rojas, M., F. Quintero, and W.F. Krajewski. 2020. “Performance of the National Water Model 

385 Analysis and Assimilation configuration over Iowa.” Journal of the American Water 

386 Resources Association 56(4): 568–585. https://doi.org/10.1111/1752-1688.12820

https://doi.org/10.1175/JHM-D-19-0292.1
https://doi.org/10.1175/JHM-D-19-0292.1
https://doi.org/10.1109/ACCESS.2016.2631172
ftp://ftp.horizon-systems.com/NHDplus/NHDPlusV21/Documentation/NHDPlusV2_User_Guide.pdf
ftp://ftp.horizon-systems.com/NHDplus/NHDPlusV21/Documentation/NHDPlusV2_User_Guide.pdf
https://doi.org/10.1029/2010JD015139
https://doi.org/10.1061/(ASCE)HE.1943-5584.0002022
https://doi.org/10.1016/j.jhydrol.2020.124686
https://doi.org/10.1111/1752-1688.12820


This article is protected by copyright. All rights reserved

387 Seo, B.-C., B. Dolan, W.F. Krajewski, S. Rutledge, and W. Petersen. 2015. “Comparison of 

388 single- and dual-polarization–based rainfall estimates using NEXRAD data for the NASA 

389 Iowa Flood Studies project.” Journal of Hydrometeorology 16(4): 1658–1675. 

390 https://doi.org/10.1175/JHM-D-14-0169.1

391 Seo, B.-C., and W.F. Krajewski. 2020. “Statewide real-time quantitative precipitation estimation 

392 using weather radar and NWP model analysis: Algorithm description and product 

393 evaluation.” Environmental Modelling and Software 132: 104791. 

394 https://doi.org/10.1016/j.envsoft.2020.104791

395 Seo, B.-C., F. Quintero, and W.F. Krajewski. 2018. “High-resolution QPF uncertainty and its 

396 implications for flood prediction: A case study for the Eastern Iowa flood of 2016.” 

397 Journal of Hydrometeorology 19(8): 1289–1304. https://doi.org/10.1175/JHM-D-18-

398 0046.1

399 Sorooshian, S., Q.  Duan, and V.K.  Gupta. 1993. “Calibration of rainfall- runoff models: 

400 Application of global optimization to the Sacramento soil moisture accounting model.” 

401 Water Resources Research 29(4): 1185–1194. https://doi.org/10.1029/92WR02617

402 Souverijns, N., A. Gossart, S. Lhermitte, I.V. Gorodetskaya, S. Kneifel, M. Maahn, F.L. Bliven, 

403 and N.P.M. van Lipzig. 2017. “Estimating radar reflectivity—Snowfall rate relationships 

404 and their uncertainties over Antarctica by combining disdrometer and radar 

405 observations.” Atmospheric Research 196: 211–223. 

406 https://doi.org/10.1016/j.atmosres.2017.06.001

407 Tang, X., D. Knight, and P.G. Samuels. 1999. “Variable parameter Muskingum-Cunge method 

408 for flood routing in a compound channel.” Journal of Hydraulic Research 37(5): 591–

409 614. https://doi.org/10.1080/00221689909498519

410 Wigmosta, M.S., and D.P. Lettenmaier. 1999. “A comparison of simplified methods for routing 

411 topographically driven subsurface flow.” Water Resources Research 35(1): 255–264. 

412 https://doi.org/10.1029/1998WR900017

413 Wigmosta, M.S., L.W. Vail, and D.P. Lettenmaier. 1994. “A distributed hydrology‐vegetation 

414 model for complex terrain.” Water Resources Research 30(6): 1665–1679. 

415 https://doi.org/10.1029/94WR00436

https://doi.org/10.1175/JHM-D-14-0169.1
https://doi.org/10.1016/j.envsoft.2020.104791
https://doi.org/10.1016/j.atmosres.2017.06.001
https://doi.org/10.1080/00221689909498519
https://doi.org/10.1029/1998WR900017
https://doi.org/10.1029/94WR00436


This article is protected by copyright. All rights reserved

416 Xia, Y., K. Mitchell, M. Ek, J. Sheffield, B. Cosgrove, E. Wood, L. Luo, C. Alonge, H. Wei, J. 

417 Meng, B. Livneh, D. Lettenmaier, V. Koren, Q. Duan, K. Mo, Y. Fan, and D. Mocko. 

418 2012. “Continental-scale water and energy flux analysis and validation for the North 

419 American Land Data Assimilation System project phase 2 (NLDAS-2): 1. 

420 Intercomparison and application of model products.” Journal of Geophysical Research: 

421 Atmospheres 117: D03109. https://doi.org/10.1029/2011JD016048

422 Yang, Z.-L., G.-Y. Niu, K.E. Mitchell, F. Chen, M.B. Ek, M. Barlage, L. Longuevergne, K. 

423 Manning, D. Niyogi, M. Tewari, and Y. Xia. 2011. “The community Noah land surface 

424 model with multiparameterization options (Noah‐MP): 2. Evaluation over global river 

425 basins.” Journal of Geophysical Research 116: D12110. 

426 https://doi.org/10.1029/2010JD15140

427 Zhang, J., K. Howard, C. Langston, B. Kaney, Y. Qi, L. Tang, H. Grams, Y. Wang, S. Cocks, S. 

428 Martinaitis, A. Arthur, K. Cooper, J. Brogden, and D. Kitzmiller. 2016. “Multi-Radar 

429 Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating 

430 capabilities.” Bulletin of the American Meteorological Society 97(4): 621–638. 

431 https://doi.org/10.1175/BAMS-D-14-00174.1

432

433 Figure Legends

434 Figure 1. The locations of 140 USGS stations in the study domain where streamflow 

435 observations were assimilated into the NWM.  The yellow circles represent the uppermost USGS 

436 stream gauges.  The red circles indicate the evaluation points in this study.  The solid blue lines 

437 represent river and stream networks.  The two shaded watersheds delineate the drainage areas of 

438 two USGS stations (Van Meter and Cedar Falls) used in Figure 2.

439 Figure 2. Observed and NWM simulated hydrographs with DA and open-loop (NoDA) modes at 

440 Van Meter (USGS 05484500) and Cedar Falls (USGS 05463050) in Iowa.

441 Figure 3. Performance comparison of model simulation results (DA and NoDA) with those of 

442 persistence (No Model).  Each circle indicates one of 70 individual evaluation locations 

443 presented in Figure 1.

444 Figure 4. Performance comparison between the results of DA and persistence (No Model) 

445 regarding catchment scale.
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446 Figure 5. Performance improvement characterized by (a) the areal coverage fraction of upstream 

447 assimilation locations to a downstream evaluation location and (b) the distribution change of 

448 peak timing error.  The distribution of areal coverage fraction is shown in (c). 
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